Universal quantifiers: logically equivalent, psychologically distinct

Tyler Knowlton

MindCORE, University of Pennsylvania

Linguistics & Cognitive Science Colloquium University of Delaware

12.1.23

Textbook treatment of quantification:

A function that takes an individual to TRUE iff it's a frog

What does it mean for the extensions of "frog" and "is green" to be suitably related?

A function that essentially takes a pair of functions to TRUE iff <u>their extensions are suitably related</u>

Each/every/most/some/... frogs are green

 $#(GREEN \cap FROGS) > #(\neg GREEN \cap FROGS)$ $#(GREEN \cap FROGS) > #(FROGS) - #(GREEN \cap FROGS)$ $OneToOne+(GREEN \cap FROGS, \neg GREEN \cap FROGS)$

There are many logically equivalent ways of specifying the "most relation"

Each/every/most/some/... frogs are green

#(GREEN ∩ FROGS) > #(¬ GREEN ∩ FROGS) predicate negation #(GREEN ∩ FROGS) > #(FROGS) – #(GREEN ∩ FROGS) numerical subtraction OneToOne+(GREEN ∩ FROGS, ¬ GREEN ∩ FROGS) cardinality-free

There are many logically equivalent **but psychologically distinct** ways of specifying the *"most* relation" ... **which one is right?**

Research strategy: leverage what's known about relevant cognitive systems to tease apart hypotheses about "psycho-logical" form

Roadmap

✓ Broad goal: Investigating "psycho-logical forms"

➡ e.g., how *most* is mentally specified (cardinality vs. correspondence; negation vs. subtraction; ...)

Current Case Study: *Each* vs. *Every*

- ➡ Proposed difference: first-order (individuals only) vs. second-order (group implicating) logic
- ➡ Proposed connection to non-linguistic cognition: object-files & ensembles

Evidence from sentence verification

Encoding/recalling individual vs. group information

Downstream pragmatic consequences

- Quantifying over small vs. large domains
- Every NP is better able to provide a plural antecedent than Each NP

First-order representation ∀x:Frog(x)[Green(x)]

≈ Any individual that satisfies 'Frog' is such that it satisfies 'Green'

Each is 'more individualistic' whereas **Every** is 'friendlier to groups'

(e.g., Vendler 1962; Beghelli & Stowell 1997; Beghelli 1997; Tunstall 1998; Landman 2003; Surányi 2003)

Which book did you give each student? A: I gave *Foundation* to Frank, *Dune* to Dani, and *Artemis* to Allie

Which book did you give every student? A: There's no one book that I gave to every student...

Second-order representation TheX:Frog(X) \subseteq TheY:Green(Y)

≈ The Frogs are among

The Green Things

every

each

First-order representation ∀x:Frog(x)[Green(x)] ≈ Any individual that satisfies 'Frog'

is such that it satisfies 'Green'

Second-order representation TheX:Frog(X) \subseteq TheY:Green(Y)

≈ The Frogs are among

The Green Things

Theoretical and empirical reasons to reject this relational specification (Knowlton et al. 2023 *Nat. Lang. Sem.*)

First-order representation ∀x:Frog(x)[Green(x)]

≈ Any individual that satisfies 'Frog'is such that it satisfies 'Green'

Object-file representation

Index an individuated object and anchor list of associated individual properties (e.g., color, size, ...)

(e.g., Kahneman & Treisman 1984; Kahneman, Treisman, & Gibbs 1992; Xu & Chen 2009; Carey 2009; Green & Quilty-Dunn 2020)

Only *every*'s meaning has a semantic constituent corresponding to a grouping of its 1st arg. (The Frogs)

Ensemble representation

Abstract away from individual properties and encode collection in terms of summary statistics (e.g., average hue, cardinality, ...)

(e.g., Ariely 2001; Chong & Treisman 2003; Haberman & Whitney 2011; Whitney & Yamanashi Leib 2018)

Second-order representation TheX:Frog(X)[∀x:X(x)[Green(x)]]

 \approx The Frogs are such that

any individual that's one of them

is such that it satisfies 'Green'

Roadmap

✓ Broad goal: Investigating "psycho-logical forms"

⇒ e.g., how *most* is mentally specified (cardinality vs. correspondence; negation vs. subtraction; ...)

✓ Current Case Study: *Each* vs. *Every*

- Proposed difference: first-order (individuals only) vs. second-order (group implicating) logic
- Proposed connection to non-linguistic cognition: object-files & ensembles

Evidence from sentence verification

Encoding/recalling individual vs. group information

Downstream pragmatic consequences

- Quantifying over small vs. large domains
- Every NP is better able to provide a plural antecedent than Each NP

How many {big/medium/small} circles were there?

Cardinality (ensemble property)

➡ If you initially represented the big circles, you should have a good estimate of their cardinality

n = 12

0

Where was the middle

of the circles?

Center of Mass (ensemble property)

(with 3- to 8-year-olds)

Distance from tap to actual set center

n = 36

Knowlton, Halberda, Pietroski & Lidz (2023) Glossa Psycholinguistics

Knowlton, Halberda, Pietroski & Lidz (2023) Glossa Psycholinguistics

Ongchoco, Knowlton & Papafragou (2023) Cog Sci

Roadmap

✓ Broad goal: Investigating "psycho-logical forms"

➡ e.g., how *most* is mentally specified (cardinality vs. correspondence; negation vs. subtraction; ...)

✓ Current Case Study: *Each* vs. *Every*

- Proposed difference: first-order (individuals only) vs. second-order (group implicating) logic
- Proposed connection to non-linguistic cognition: object-files & ensembles

✓ Evidence from sentence verification

Encoding/recalling individual vs. group information

Downstream pragmatic consequences

- ➡ Quantifying over small vs. large domains
- Every NP is better able to provide a plural antecedent than Each NP

Downstream pragmatic consequences?

everv

First-order representation ∀x:Frog(x)[Green(x)]

≈ Any individual that satisfies 'Frog'

is such that it satisfies 'Green'

Object-file representation

Index an individuated object and anchor list of associated individual properties (e.g., color, size, ...)

(e.g., Kahneman & Treisman 1984; Kahneman, Treisman, & Gibbs 1992; Xu & Chen 2009; Carey 2009; Green & Quilty-Dunn 2020)

Only *every*'s meaning has a semantic constituent corresponding to a grouping of its 1st arg. (The Frogs)

Ensemble representation

Abstract away from individual properties and encode collection in terms of summary statistics (e.g., average hue, cardinality, ...)

(e.g., Ariely 2001; Chong & Treisman 2003; Haberman & Whitney 2011; Whitney & Yamanashi Leib 2018)

Second-order representation TheX:Frog(X)[∀x:X(x)[Green(x)]]

≈ The Frogs are such that

any individual that's one of them

is such that it satisfies 'Green'

No limit to the number of individuals represented as an ensemble

Effects of domain size in spontaneous descriptions

Effects of domain size in child-directed speech

Effects of domain size: forced-choice judgment

He said that (select a word) - martini he made each every had an olive.

% Every-responses

12 items; within-subjects; n=100

Effects of domain size: free response

If someone said

Each martini I made has an olive Every martini I made has an olive % responses below "4": *Each*: 67% *Every*: 30%

how many martinis would you guess they have in mind?

1 item; n=198

Roadmap

✓ Broad goal: Investigating "psycho-logical forms"

➡ e.g., how *most* is mentally specified (cardinality vs. correspondence; negation vs. subtraction; ...)

✓ Current Case Study: *Each* vs. *Every*

- Proposed difference: first-order (individuals only) vs. second-order (group implicating) logic
- Proposed connection to non-linguistic cognition: object-files & ensembles

✓ Evidence from sentence verification

➡ Encoding/recalling individual vs. group information

Downstream pragmatic consequences

- Quantifying over small vs. large domains
- Every NP is better able to provide a plural antecedent than Each NP

Predicates with *same* require a comparison class

(1) a. #Kermit is the same color (same as what??)

b. The frogs are the same color

Prediction: Because every frog implicitly introduces the frogs, it should behave more like (1b); each frog doesn't introduce such a group, so should behave more like (1a)

Sentence-internal *same*: forced-choice judgment

Leveraging details of **non-linguistic cognitive systems** to tease apart distinctions in **psycho-logical forms**

- Case study: First-order *each*; (partially) Second-order *every*
 - Connections to Object-files and Ensembles
 - Consequences for pragmatics
 - Consequences for language acquisition

Broader goal: building up inventory of vocabulary for mentally specifying linguistic meanings

- ➡ Cardinality; Subtraction; First-order/Second-order distinction
- ➡ But maybe not: predicate negation; set-theoretic relations; ...

Thanks (to each & every one of you) for listening!

Collaborators on presented work:

NSF NRT-1449815 & NSF BCS-2017525