

Non-conservative quantifiers are unlearnable

Tyler Knowlton¹, John Trueswell², Anna Papafragou³

¹MindCORE ²Department of Psychology ³Department of Linguistics University of Pennsylvania

Big Picture: All natural language determiners have "conservative" meanings. If this typological universal reflects a deep fact about determiner semantics, non-conservative determiners should be impossible to learn. Novel quantifier learning experiments with adults bear out this prediction.

The cross-linguistic universal "conservativity"

Conservativity: The intuition

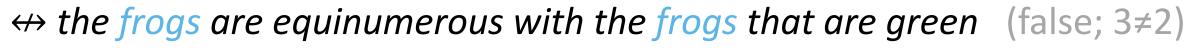
- > The noun phrase that a **determiner** combines with "sets the stage"
- For sentences like *every/some/no frog is green*, only frogs (and their colors) matter
 - Compare: only frogs are green, where non-frogs (and their colors) matter too
 - Only which isn't a determiner [1] is non-conservative

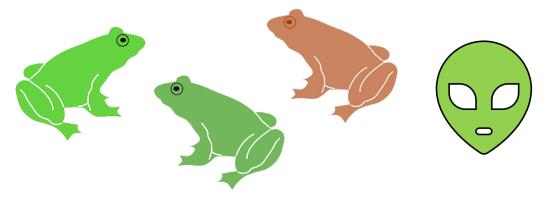
Conservativity: A more formal definition

- > A determiner **DET** is conservative iff duplicating its first/NP argument in its second/predicative argument is logically inert:
 - (1) [[**DET** NP] PRED] \leftrightarrow [[**DET** NP] [be NP that PRED]]
 - (2) every frog is green \leftrightarrow every frog is a frog that is green

Since the former can be false while the

(3) only frogs are green \leftrightarrow only frogs are frogs that are green \checkmark


latter is true, only is non-conservative


All natural language determiners are conservative [e.g., 2-4]

> Languages have conservative determiners like *every*, but no language has non-conservative determiners like *equi*

(4) equi frogs are green

≈ the frogs are equinumerous with the green things

- > This typological generalization has been argued to reflect a <u>fundamental property of the language faculty [e.g., 5-9]</u>
 - Suggests a connection to learnability: it should be impossible to pair non-conservative meanings with determiners

Prior work pursuing a conservativity-learnability link

Hunter & Lidz (2013): Picky Puppet Task [10]

> Taught 5-year-olds a novel quantifier that was either conservative, as in (5), or non-conservative, as in (6)

(5) **gleeb** girls are on the beach

≈ not all girls are on the beach

(true; 2 girls on grass)

→ not all girls are girls that are on the beach (6) gleeb girls are on the beach

(true; 2 girls on grass)

≈ not only girls are on the beach

(true; 1 boy on beach) → not only girls are girls that are on the beach (false; contradiction)

> Tested on unseen scenes; asked to sort them according to whether the picky puppet liked the scene or not

5-year-olds showed a learnability advantage for the conservative vs. the non-conservative quantifier On average, children were 82% correct vs. 62% correct; 5/10 vs. 1/10 participants perfectly sorted novel scenes

Spenader & de Villiers (2019): Attempted Replication [11]

Failed to find a learnability advantage for the conservative *gleeb*, both in children and in adults

5-year-olds showed no significant effects of learning in either the conservative or non-conservative condition On average, children were 60% correct vs. 68% correct when confronted with novel scenes Adults showed the opposite effect: 56% correct vs. 69% correct; 1/9 vs. 4/9 perfect sorters

References: [1] Herburger (2000) What counts [2] Barwise & Cooper (1981) Generalized quantifiers and natural language [3] Higginbotham & May (1981) Questions, quantifiers and crossing [4] Keenan & Stavi (1986) A semantic characterization of natural language determiners [5] Romoli (2015) A structural account of conservativity [6] Pietroski (2004) Events and semantic ture [7] Pietroski (2018) Conjoining meanings [8] Piattelli-Palmarini (2008) Events and conservativity [9] Knowlton et al. (2021) Determiners are 'conservative' because their meanings are not relations [10] Hunter & Lidz (2013) Conservativity and learnability of determiners [11] Spenader & de Villiers (2019) Are conservative quantifiers easier to learn? Thanks to Jeffrey Lidz, Paul Pietroski, Alexander Williams, Zoe Ovans, Florian Schwarz, and the audience at The UMass Psycholinguistics Workshop | Contact: tzknowlt@upenn.edu

Current experiments

Differences between Hunter & Lidz's task and current experiments:

- > Avoiding the partitive (gleeb girls are on the beach) vs. embracing it (gleeb of the circles are blue)
- > Picky puppet task (figure out which scenes the puppet likes) vs. explicit word-learning task (figure out what *gleeb* means)
- > Using negations of existing words (not all vs. not only) vs. a new pair of conservative and non-conservative meanings:

(7) **gleeb** of the circles are blue

- ≈ all but one of the circles are blue
- →all but one of the circles are circles that are blue

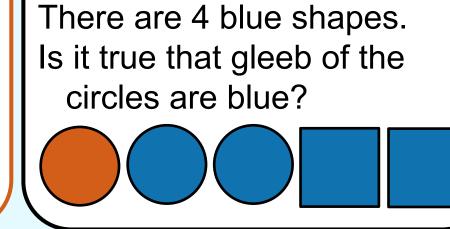
(8) gleeb of the circles are blue

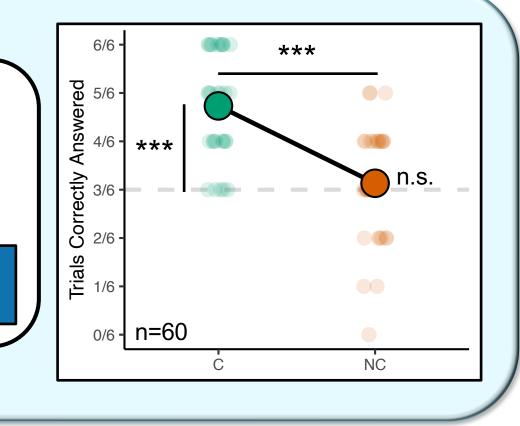
There are 3 circles.

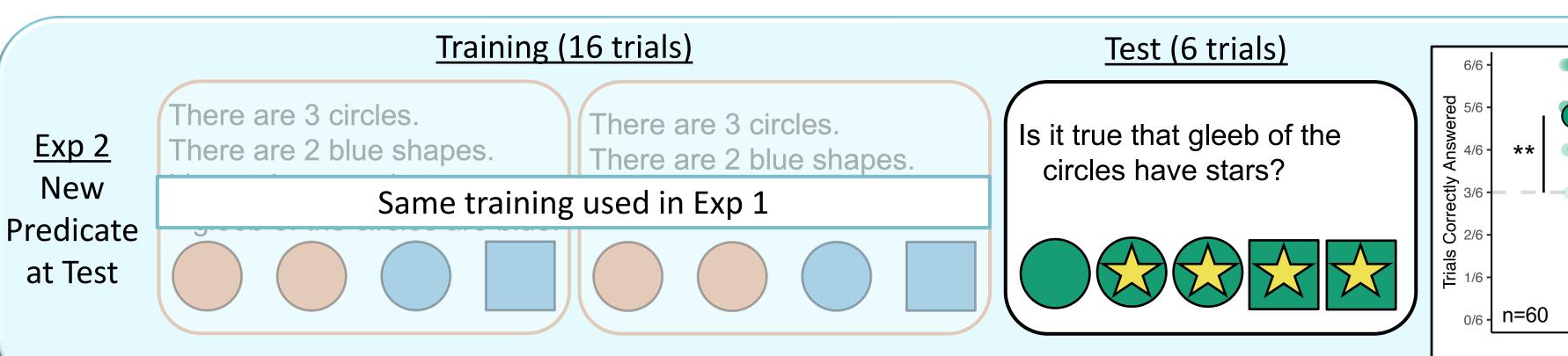
Learning It's not the case that

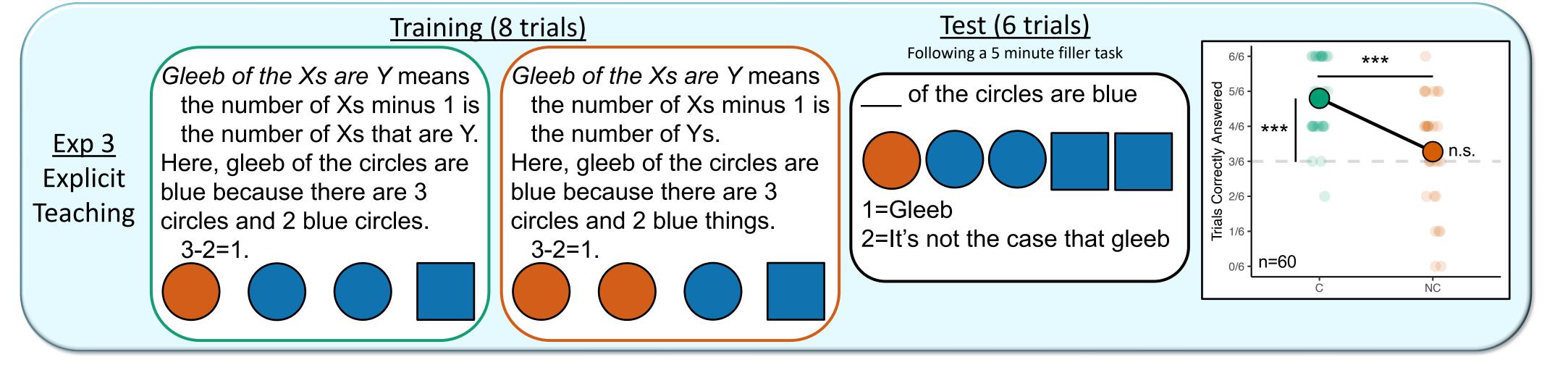
Example

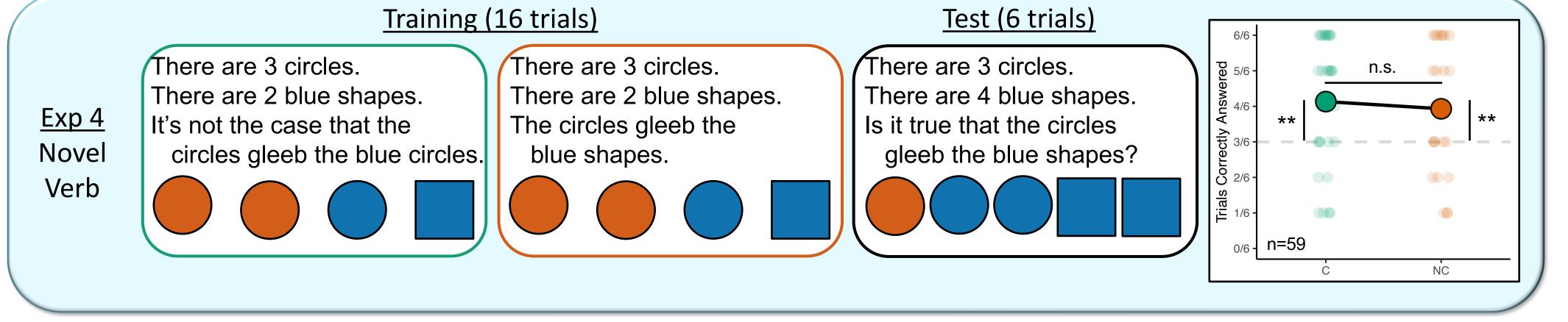
There are 2 blue shapes.


gleeb of the circles are blue.


- ≈ the circles outnumber by 1 the blue things
- \leftrightarrow the circles outnumber by 1 the circles that are blue things (false; 3 circles 1 \neq 1 blue circle)


(true; 3 circles - 1 = 2 blue things)


Training (16 trials) Test (6 trials) There are 3 circles. There are 3 circles.


There are 2 blue shapes. Gleeb of the circles are blue.

Takeaway: Conservativity and learnability are connected, as predicted by views on which conservativity isn't a historical accident or general cognitive/communicative tendency, but a cornerstone of the semantics of determiners [e.g., 5-9]