Representational Format and Universal Quantifiers

Tyler Knowlton¹, Paul Pietroski², Justin Halberda³, Jeffrey Lidz¹

Contact: tzknowlt@umd.edu

Introduction: First- & second-order meanings

Big Picture Question: How are universal quantifiers – *each, every,* and *all* – mentally represented?

- > Conclusion: Even though all three universals are first-orderizable, only each has a first-order representation

First-vs. second-order quantification

"every dot is blue"

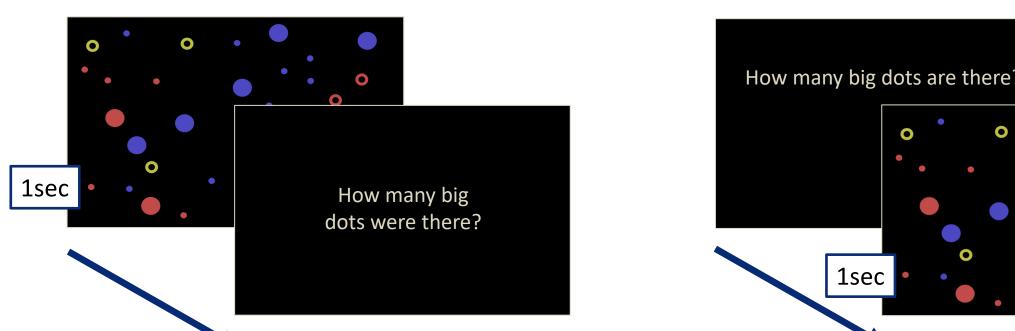
(1)	$\lambda D.\lambda B. \forall x: Dx[Bx]$	
(2)	λD.λB.¬∃x:Dx[¬Bx]	
(3)	$\lambda D.\lambda B.D \subseteq B$	C
(4)	$\lambda D.\lambda B.D = D \cap B$	
(5)	•••	

> Are the universals equally-well described by (1)-(4)? Or are meanings specified at a finer grain-size in the mind?

Linking Hypothesis:

> People are biased toward verification strategies that transparently reflect the meaning under evaluation [1-3] • Methodological strategy: Variation in verification that can't be otherwise explained is due to the meaning

Second-order meaning \rightarrow attend to & represent sets \rightarrow encode those sets' cardinalities in memory [4,5] **First-order meaning** \rightarrow attend to & represent individuals \rightarrow fail to encode set-based properties (e.g., #) in memory


Background: Measuring cardinality knowledge

Baseline task

Dots First

> When asked to estimate the cardinality of some subset, participants can be fit with an accuracy (β) and precision parameter (1- σ) [6-9] **Result**: Better accuracy & precision when given the question first

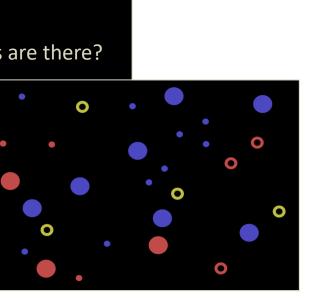
Question First

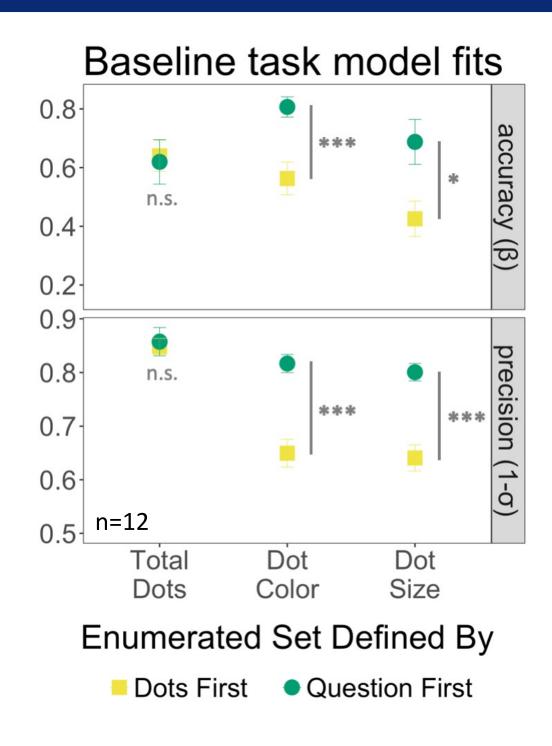
Adding language: *most*- vs. existential-statements

Participants biased to attend to groups or not based on the statement under evaluation:

- A decidedly second-order *most*-statement or a plausibly first-order existential-statement
- set (target) or a random set (distractor)

Result: Participants know the restrictor set's cardinality better following *most*-statements


Most's second-order meaning leads participants to represent groups

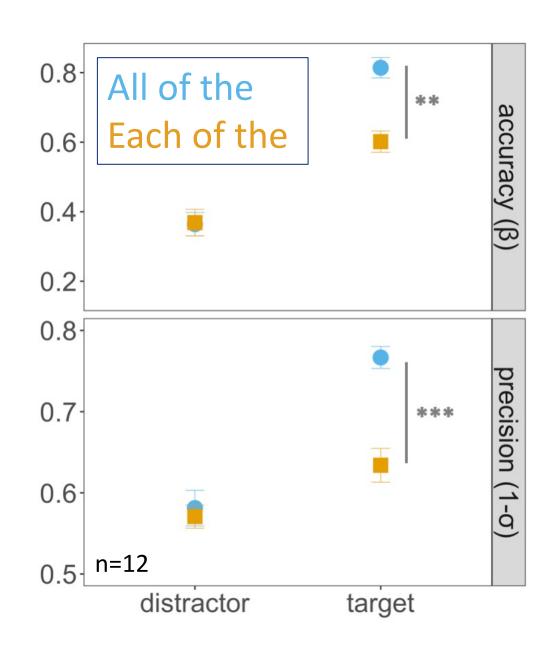

> Finding: Despite truth-conditional equivalence, each biases representing individuals; every/all bias representing groups

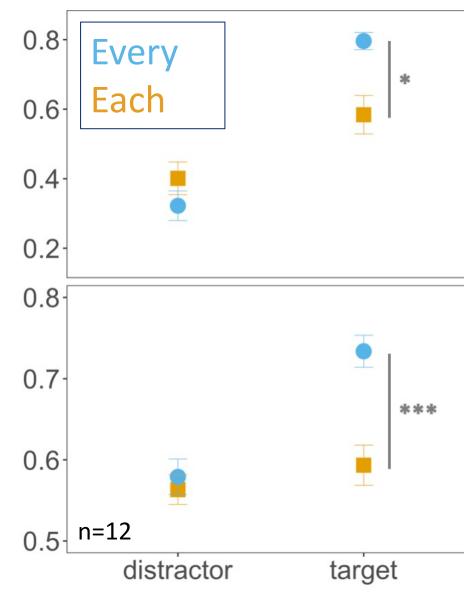
> There are infinitely many ways to formally specify the relation expressed by universal quantifiers, including (1)-(4)

First-order: domain=individuals; assignment=one value per variable

Second-order: genuine relation between two groups / sets

Each-statements lead participants to represent individuals (thanks to their first-order meaning) *Every-* and *all-statements lead participants to leading participants to represent groups (thanks to their second-order meaning)*


Tal



Comparing the universals

Testing truth-conditionally equivalent statements

> Same task, but both conditions were matched in syntax, truth-conditions, and images **Result**: Participants know the restrictor set's cardinality better following *every*- and *all*-statements than following *each*-statements; *every*- and *all*-statements still pattern together when tested within subjects

Linguistic consequences	of first-
Distributivity	Genericity
While every and all can give rise to distributive interpretations, each mandatorily does [10,11]:	While thoug
(6) a. Each student sang happy birthday	(8) a
(well as a solo piece / #in perfect harmony)	b.
 b. Every student/all the students sang happy birthday (well as a solo piece / in perfect harmony) 	C. /
	(9) Us
 (7) a. Determine whether each dragon is dangerous ('for each dragon, figure out whether it's dangerous') b. Determine whether every dragon is dangerous ('figure out if it's true that every dragon is dangerous') 	GenerentitieF
 Each is sometimes said to be a pronunciation of the distributive operator, D (e.g., [12]) If each/D is first-order, the predicate must to apply to the elements in the domain individually 	The # doma T T P
keaway: each, every, and all are represented in different forma	ts in speak
Fach is represented in a first-order format: every and all are repr	rosontad in

• • •

> Each is represented in a first-order format; every and all are represented in second-order formats > Knowledge of group-based properties (e.g., #) following evaluation reflects this subtle difference in meaning

References: [1] Pietroski, Lidz, Hunter, & Halberda (2009) The meaning of 'most': Semantics, numerosity and psychology [2] Lidz, Pietroski, Halberda, & Hunter (2011) Interface transparency and the psychosemantics of most [3] Tomaszewicz (2011) Verification strategies for two majority quantifiers in polish [4] Ariely (2001) Seeing sets: Representation by statistical properties [5] Alvarez (2011) Representing multiple objects as an ensemble enhances visual cognition [6] Stevens (1964) Concerning the psychophysical power law [7] Laming (1997) The measurement of sensation [8] Odic, Im, Eisinger, Ly, & Halberda (2016) Psimle: A maximum-likelihood estimation approach to estimating psychophysical scaling and variability more reliably, efficiently, and flexibly [9] Halberda, Sires, & Feigenson (2006) Multiple spatially overlapping sets can be enumerated in parallel [10] Vendler (1962) Each and every, any and all [11] Dowty (1987) Collective predicates, distributive predicates, and all [12] LaTerza (2014) Distributivity and plural anaphora [13] Beghelli & Stowell (1997) Distributivity and negation: The syntax of each and every [14] Gil (1992) Scopal quantifiers: some universals of lexical effability [15] Asher & Morreau (1995) What some generic sentences mean [16] Rescher (1962) Plurality Quantification Big thanks to: Alexander Williams, Ellen Lau, Darko Odic, Mina Hirzel, Laurel Perkins, Zoe Ovans, Nicolò Arlotti, Josh Langfus **Funding**: NSF NRT-DESE-1449815 & Maryland Language Science Center

accuracy (β)	0.8- 0.6- 0.4- 0.2-	Every All of the	n.s.	accuracy (β)
	0.8-			
precision (1-σ)	0.7-		n.s.	precision (1-σ)
n (1-a	0.6-		n.s.	ר (1-ס)
)	0.5	n=12 distractor	target	
		นเอเเลียงเป	laryer	

-order each

le every and all can be used to express generic ughts, *each* cannot [13,14]:

- #Each bird lays eggs
- Every bird lays eggs
- All birds lay eggs

Jsually you complain every/#each time we shop

eric statements abstract away from individual ties / events and describe group properties FOL considers individuals and their properties

of exceptions tolerated changes with the nain size; hard to capture in FOL (though see [15]) The same problem arises for statements with proportional quantifiers, like most [16]

kers' minds