Acquiring the Universal Quantifiers:
every part together or *each* part on its own?

Tyler Knowlton\(^1\), Justin Halberda\(^2\), Paul Pietroski\(^3\), Jeffrey Lidz\(^1\)

\(^1\)University of Maryland
\(^2\)Johns Hopkins University
\(^3\)Rutgers University

Roadmap

- Multiple universal quantifiers; subtle meaning differences
 - Mandatory distributivity of *each*

(1) The preacher looked at each/every/all member(s) of his flock
Roadmap

• Multiple universal quantifiers; subtle meaning differences
 • Mandatory distributivity of each

• Is acquisition sequential or simultaneous?

• New approach – implicit measure
 • Proof of concept: More vs. Most
 • Each vs. Every
Roadmap

• Multiple universal quantifiers; subtle meaning differences
 • Mandatory distributivity of each

• Is acquisition sequential or simultaneous?

• New approach – implicit measure
 • Proof of concept: More vs. Most
 • Each vs. Every
Distributivity and *Each /* Every /* All*

(2) a. Each boy sang happy birthday (well as a solo piece / # in perfect harmony)

b. Every boy sang happy birthday (well as a solo piece / in perfect harmony)

c. All the boys sang happy birthday (well as a solo piece / in perfect harmony)
Distributivity and *Each / Every / All*

(2) a. Each boy sang happy birthday (well as a solo piece / # in perfect harmony)
 b. Every boy sang happy birthday (well as a solo piece / in perfect harmony)
 c. All the boys sang happy birthday (well as a solo piece / in perfect harmony)

(3) a. *Each (of the) student(s) gathered
 b. ?Every student gathered
 c. All (of the) students gathered

(4) a. *Each (of the) soldier(s) surrounded the fortress
 b. ?Every soldier surrounded the fortress
 c. All (of the) soldiers surrounded the fortress

(5) It took {*each/every/all the} boy(s) to lift the piano
Distributivity and *Each / Every / All*

(5) It took {*each/every/all the} boy(s) to lift the piano

(6) Ask someone whether each dragon is dangerous

(7) Ask someone whether every dragon is dangerous
Distributivity and *Each / Every / All*

(5) It took {*each/every/all the} boy(s) to lift the piano

(6) Ask someone whether *each* dragon is dangerous

(7) Ask someone whether *every* dragon is dangerous *✗*

→ *Each* is mandatorily distributive

Roadmap

• Multiple universal quantifiers; subtle meaning differences
 • Mandatory distributivity of *each*

• Is acquisition sequential or simultaneous?

• New approach – implicit measure
 • Proof of concept: *More* vs. *Most*
 • *Each* vs. *Every*
Acquiring (the distributivity of) *each*

- **TVJT / Picture-selection / Picture-Evaluation**

- **Brooks & Braine 1996**

 - 4- & 5-yos (unlike adults) give collective interpretations to *each*-statements
 - Even 7-yos offer non-adult like interpretations ~25% of the time
Acquiring (the distributivity of) *each*

- *Each* is acquired in 2 parts:
 - **Universal** component
 - **Distributive** component

- Brooks & Braine 1996
 - 4- & 5-yos (unlike adults) give collective interpretations to *each*-statements
 - Even 7-yos offer non-adult like interpretations ~25% of the time

Acquiring (the distributivity of) *each*

- Syrett & Musolino 2013 point out
 - Relative salience of collective pictures
 - Potential preference for singular interpretation of indefinite
 - Potential bleeding across item types
 - Testing preference, not availability
Acquiring (the distributivity of) *each*

- Syrett & Musolino 2013
 “Two boys each pushed a car”

- 3- & 4-yos can access distributive interpretations...
 • ...but still allow collective interpretations given adverbial *each*
Acquiring (the distributivity of) *each*

- Is *each*’s meaning learned in two parts?
 - Universal then distributive (e.g., Brooks & Braine, 1996)

- Or are learners sensitive to this property as soon as they know what *each* means?
 - Underlying competence is masked in prior work

Roadmap

- Multiple universal quantifiers; subtle meaning differences
 - Mandatory distributivity of *each*

- Is acquisition sequential or simultaneous?

- New approach – implicit measure
 - Proof of concept: *More vs. Most*
 - *Each* vs. *Every*
Implicit evidence

• Obvious TRUE/FALSE question

\[\forall x: \text{Circle}(x)[\text{Blue}(x)] \]

\[\text{CIRCLE} \subseteq \text{BLUE} \]
Implicit evidence

• Obvious TRUE/FALSE question
• Measure how the meaning changes what information participants represent

Each/Every circle is blue

∀x:Circle(x)[Blue(x)]

CIRCLE ⊆ BLUE

Good estimate of summary statistics (number, avg. size, center of mass, …)

Ariely 2001; Cohng & Treisman 2003; Feigenson et al. 2004; Burr & Ross 2008; Alvarez 2011; ao
Roadmap

• Multiple universal quantifiers; subtle meaning differences
 • Mandatory distributivity of each

• Is acquisition sequential or simultaneous?

• New approach – implicit measure
 • Proof of concept: More vs. Most
 • Each vs. Every
More, Most, & memory

“Did the {blue/yellow} team paint {more/most} of the dots?”

“Where was the middle of the {blue/yellow} dots?”

More: compare blue & yellow
Most: compare blue & total

Pietroski et al. 2009
Lidz et al. 2011
Tomaszewicz 2011
Wong et al. in perp

Adult work on English, Polish, & Cantonese
More, Most, & memory

More: compare blue & yellow
Most: compare blue & total

“Did the {blue/yellow} team paint {more/most} of the dots?”

“Where was the middle of the {blue/yellow} dots?”

Representing a group

Good estimate of summary statistics
(number, avg. size, center of mass, ...)
Ariely 2001; Cohg & Treisman 2003; Feigenson et al. 2004; Burr & Ross 2008; Alvarez 2011; ao

Did the blue team paint {more/most} of the dots?
Touch the center of the blue dots

→ Participants encode the focused set given either quantifier

More, Most, & memory

Distance from tap to actual set center

n=213, Ages: 3;11 – 8;3; Mean: 6;6

Most
More

focus (e.g. blue) non-focus (e.g. yellow)
More, Most, & memory

Distance from tap to actual set center

n=213, Ages: 3;11 – 8;3; Mean: 6;6

Did the blue team paint (more/most) of the dots?

Touch the center of the yellow dots

→ Only participants evaluating more-statements encoded the non-focused set!

More non-focus
More, Most, & memory

Distance from tap to actual set center

n=213, Ages: 3;11 – 8;3; Mean: 6;6

Most

More error
Roadmap

• Multiple universal quantifiers; subtle meaning differences
 • Mandatory distributivity of each

• Is acquisition sequential or simultaneous?

• New approach – implicit measure
 • Proof of concept: More vs. Most
 • Each vs. Every

Each vs. Every

“Is (each/every) circle blue?”

“Where was the middle of the circles?”
Each vs. Every

Every: consider circles as group
Each: consider individual circles

“Is {each/every} circle blue?”

“Where was the middle of the circles?”

Each vs. Every

Every: consider circles as group
Each: consider individual circles

“Is {each/every} circle blue?”

“Where was the middle of the circles?”
Each vs. Every

Every: consider circles as group
Each: consider individual circles

“Is {each/every} circle blue?”

“Where was the middle of the circles?”

Representing a group

Good estimate of summary statistics
(number, avg. size, center of mass, ...)
Ariely 2001; Cohng & Treisman 2003; Feigenson et al. 2004; Burr & Ross 2008; Alvarez 2011; ao

Each vs. Every

Distance from tap to actual set center

Is {each/every} circle blue?

Touch the center of the circles

→ Participants encoded the set circles better following every-statements

n=76, Ages: 3;2 – 7;11; Mean: 6;0
Everything
Each vs. Every

Distance from tap to actual set center

n=76, Ages: 3;2 – 7;11; Mean: 6;0

Each vs. Every
Each vs. Every

- Sequential hypothesis predicts effect of age; contra the simultaneous hypothesis
- We find no age effect
 - As soon as participants know each, they use an individual-based strategy
 - Ditto for every and a group-based strategy

Conclusions

- Methodological: Information gathered during verification reflects subtle meaning differences
 - Even when that information is incidental to the T/F judgement
Conclusions

• **Methodological**: Information gathered during verification reflects subtle meaning differences
 • Even when that information is incidental to the T/F judgement

• **Empirical**: Learners are sensitive to the distributivity of *each* as soon as they acquire the word

• **Theoretical**: How do learners acquire this distinction?
 • For next year!
Thanks!

Alexander Williams
Valentine Hacquard
Ellen Lau
Tara Mease
Zoe Ovans
Laurel Perkins
Mina Hirzel
Alex Silver
Allison Rhodes
Rebekah Senderling
Bekki Kline
Rosetta Previti
UMD Project on Children’s Language Learning